Adaptive unknonwn-input observers-based synchronization of chaotic circuits for secure telecommunication
نویسندگان
چکیده
Wepropose a robust adaptive chaotic synchronization method based on unknown-input observers for master-slave synchronization of chaotic systems, with application to secured communication. The slave system is modelled by an unknown input observer in which, the unknown input is the transmitted information. As in the general observer-based synchronization paradigm, the information is recovered if the master and slave systems robustly synchronize. In the context of unknown-input observers, this is tantamount to estimating the master’s states and the unknown inputs. The set-up also considers the presence of perturbations in the chaotic transmitter dynamics and in the output equations (the transmitted signal). That is, the estimator (slave system) must synchronize albeit noisy measurements and reject the effect of perturbations on the transmitter dynamics. We provide necessary and sufficient conditions for synchronization to take place. To highlight our contribution, we also present some simulation results with the purpose of comparing the proposed method to classical adaptive observer-based synchronization (without disturbance rejection). It is shown that additive noise is perfectly canceled and the encoded message is well recovered despite the perturbations.
منابع مشابه
Anti-Synchronization of Complex Chaotic T-System Via Optimal Adaptive Sliding-Mode and Its Application In Secure Communication
In this paper, an optimal adaptive sliding mode controller is proposed for anti-synchronization of two identical hyperchaotic systems. We use hyperchaotic complex T-system for master and slave systems with unknown parameters in the slave system. To construct the optimal adaptive sliding mode controller, first a simple sliding surface is designed. Then, the optimal adaptive sliding mode controll...
متن کاملA Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering
In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...
متن کاملطراحی سیستم مخابراتی امن با استفاده از سنکرونکردن سیستمهای آشوبی
In this paper, the concept of secure synchronization of chaotic systems using adaptive and robust techniques , has been discussed and then a new secure communication scheme, based on secure synchronization of a general class of chaotic systems called Generalized Lorenz System, are presented. This communication scheme is combination of conventional cryptographic methods and chaotic modulation me...
متن کاملModified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption
In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...
متن کاملObservers for hyperchaos synchronization with application to secure communications
In this paper hyperchaos synchronization is restated as a nonlinear observer design issue. This approach leads to a systematic tool, which guarantees synchronization of a wide class of hyperchaotic systems via a scafar signal. By exploiting this result, we propose to combine conventional cryptographic methods and Jynchronization of chaotic circuits to design hyperchaos-based cryptosystems. This...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017